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SUMMARY 
The structure of confined wakes behind a square cylinder in a channel is investigated via the numerical 
solution of the unsteady NavierStokes equations. Vortex shedding behind the cylinder induces periodicity 
in the flow field. Details of the phenomenon are simulated through numerical flow visualization. The 
unsteady periodic wake can be characterized by the Strouhal number, which varies with the Reynolds 
number and the blockage ratio of the channel. The periodicity of the flow is, however, damped in the 
downstream region of a long duct. This damping may be attributed to the influence of side walls on the flow 
structure. 
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INTRODUCTION 

The oscillation of chimney stacks and other structures in transverse flows is caused by vortex 
shedding. An initially smooth and steady flow across a bluff body may bring about damaging 
deflections of the body in cases where the natural frequency of the obstacle is close to the shedding 
frequency of the vortices. If we concentrate on the wake region where a Karman vortex street has 
been formed behind a bluff body, we shall observe that the wake zone undulates like a flag from 
side to side. These alternating deflections of the wake induce periodicity in the entire flow field. As 
a result the forces on the bluff body become periodic and culminate in vibration that can be 
detected from the oscillation of the bluff body. If this excitation frequency synchronizes with the 
natural frequency of the bluff body, the phenomenon of resonance is the obvious outcome. Hence 
unsteady flows about bluff bodies are of direct relevance to the design of structures, road vehicles, 
heat exchangers and wherever flow-induced vibration is important. 

The vortex structure in the wake of a circular cylinder has been investigated both 
experimentally’. and numeri~ally.~~ Numerical and experimental investigations have shown 
that vortex shedding behind a circular cylinder in an unbounded medium starts at a Reynplds 
number of about 40 and that periodicity is induced in the flow field.5 The study of vortex shedding 
behind rectangular/square cylinders has also been a subject of investigation for many researchers. 
A systematic study of eddies behind a rectangular cylinder has been undertaken by Okajima.6 His 
experimental results show how the Strouhal number varies with the aspect ratio of the cylinder in 
the range of Reynolds number between 70 and 2 x lo4. A recent work of Okajima’ presented the 
variation in lift and drag forces, base pressure and Strouhal number of rectangular cylinders with 
different Reynolds numbers. His computations by the finite difference method showed good 
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agreement with experimental results and it was possible to detect a critical range of Reynolds 
number where the value of the Strouhal number changes followed by a drastic change in the flow 
pattern. Davis et aZ.* reported results of a numerical and experimental study of the flow around a 
rectangular cylinder in a horizontal channel. Strouhal numbers obtained from their computations 
are in good agreement with their measurements. Baba and Miyata' have studied the vortical 
structures of the flow around a rectangular cylinder by numerical integration of the 
Navier-Stokes equations and explained some features of the non-linear interaction between 
vortical motions of different scales. However, if a square cylinder is confined in a channel, 
irrespective of the shedding of vortices in the near wake, a parabolic velocity profile will evolve 
again at the exit of a long channel." Biswas et al.1° studied the structure of the laminar wake and 
the heat transfer in the presence of thermal buoyancy in a horizontal channel with a built-in 
square cylinder. On the basis of these investigations, carried out on a related topic, it can be said 
that the channel walls exert damping effects on the periodic flow. However, concrete inferences 
about the relationship between the wake zone aerodynamics and the channel walls have not been 
drawn so far. The purpose of the present work is to perform a numerical investigation of the 
influence of the Reynolds number and the channel walls on the structure of wakes behind a square 
cylinder in a two-dimensional duct. 

STATEMENT OF THE PROBLEM 

The system of interest is a horizontal channel with an obstacle in the form of a square cylinder 
placed inside it (Figure l(a)). The dimensionless equations for continuity and momentum may be 
expressed in the following conservative form 

au av 
ax a y  

D =-+-= 0, 

The boundary conditions of interest in this investigation are as follows. At the top and bottom 
surfaces of the channel 

u=u=o. 

At the entrance to the channel 

At the exit of the channel the continuity boundary condition is used by setting 

a2u a 2 0  ---- 
a x 2 - a x 2 - 0 .  

This ensures smooth transition through the outlet. No-slip boundary conditions for the velocities 
on the obstacle are used. 
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Figure I(a). Flow in a horizontal channel with a built-in obstacle 

METHOD OF SOLUTION 

A modified version of the marker-and-cell (MAC) method". l2 is used to obtain the numerical 
solution of equations (1)-(3). The computational domain is divided into Cartesian cells. Staggered 
grid arrangements are used in which velocity components are defined at the midpoints of the cell 
sides to which they are normal (Figure l(b)). The pressure is defined at the centre of the cell. 

A numerical solution is achieved by advancing through a series of small time increments 62. 
The solution is obtained in two steps. Initially an explicit calculation is performed which uses 
previous time velocities and pressures to determine the provisional velocities through the 
accelerations caused by convection, viscous stresses and pressure gradients. Fluid incom- 
pressibility is not necessarily satisfied during this explicit calculation. In order to ensure mass 
conservation in each cell, in a subsequent second step an iterative algorithm is employed which 
adjusts the velocities through changes in the pressure field. This iterative correction of explicitly 
advanced velocity fields through an implicit continuity equation is equivalent to the solution of a 
Poisson equation for pre~sure.'~ In the iterative pressure-velocity correction process the over- 
relaxation factor is chosen as 1.8. Iterations continue until the divergence-free velocity field is 
obtained. However, for this purpose the divergence D in each cell is towed below a preassigned 
small quantity ( E )  after successive iterations. In our case E is typically lo-*. 

In order to set the initial condition for tangential velocities, Ui, at each cell is taken equal to 
unity, i.e. u/U,= 1. Consequently, the transverse velocity component Vi , j  at each cell is taken as 
zero. 
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The conditions necessary to prevent numerical instabilities are determined from the 

According to the CFL conditions, the distance the fluid travels in one time increment must be 
Courant-Friedrichs-Lewy (CFL) condition and the restriction on the grid Fourier numbers. 

less than one space increment: 

When the viscous diffusion terms are more important, the condition necessary to ensure stability 
is dictated by the restriction on the grid Fourier numbers, which results in 

The final 6~ for each time increment is the minimum of the 6zs obtained from (4) and (5). 
A somewhat more detailed description of the solution algorithm has been discussed else- 

where.'O The computations have been performed on a CONVEX-C220 system. The connect time 
and user time are 2514.3 s and 485.2 s respectively in order to perform calculations for lo00 time 
steps with 200 x 34 grids. 

RESULTS AND DISCUSSION 

For these computations 200 x 34 and 396 x 66 grids have been used. The computational results 
for 200 x 34 and 396 x 66 grids show an average difference of 3% in the peak value of C,Re, on 
the channel walls. However, the computation time with 396 x 66 grids is nearly nine times that 
with 200 x 34 grids. It can thus be said that for most practical purposes 200 x 34 grids can 
produce grid-independent results, although for some calculations 396 x 66 grids were used. 
Uniform grids are deployed throughout the calculation domain. Computations have been carried 
out in a channel of length L/H = 6.125. The geometrical centre of the square cylinder is located at 
a distance X , =  2.125 from the inlet. The channel and cylinder axes are aligned (Figure l(a)). The 
aspect ratio of the cylinder is A/B= 1. The influence of different blockage ratios, namely 
B/H = 0.125,0.25,0-3125 and 0.375, on vortex shedding was studied. The Reynolds number was 
used as input parameter. 

The structure of the wake and its functional relationship with the Reynolds number can be 
observed in Figures 2 and 3. In Figure 2 a computed steady solution for B/H = 0.25 and Re, = 37 

-=Uav ,--Wake stognotion point 

X=2*1875 X =  5.00 
Figure 2. Attached vortices behind the cylinder in the duct: Re, = 37 
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Figure 3. The wake has lost its original symmetry and is beginning to shed vortices into the stream: Re,=85 

is shown. The recirculating wake is extended nearly twice the obstacle width in the downstream 
region, but it is steady (symmetrical) and vortex shedding has not started. At Re,= 85 the wake 
loses its original symmetry and the flow becomes periodic in the near wake (Figure 3). The 
periodicity is suppressed downstream of the square cylinder by the channel walls and the flow at 
the exit of the channel tends towards steady parabolic. Davis et aL8 observed periodicity in 
computations with the same geometrical configuration as ours at Re,, x 100. Okajima7 found 
periodicity in the wake behind a rectangular cylinder in an infinite medium (blockage being 
negligibly small) at Re,, = 70. From experiments with a circular cylinder in a channel, Shair et al.’ 
report a critical Reynolds number of 130 where the wake becomes periodic. In their experiment 
the blockage ratio is 0.33 and the Reynolds number is defined in terms of a maximum velocity U 
which would exist at the same location as that of the centre of the cylinder under flow conditions 
identical with those of the experiment but in the absence of the cylinder. However, their transition 
Reynolds number describing the onset of periodicity, based on a similar definition to that of ours, 
would be 87 (the average velocity is two-thirds of the maximum velocity). It can be said that our 
Reynolds number for the onset of periodicity lies well within the range of critical Reynolds 
number obtained by other researchers. Finally, we may mention that Figures 2 and 3 are not 
merely qualitative, since the scales of the average channel velocity U,, are shown in the vector 
plots in order to make them quantitative. 

Numerical calculations with higher Reynolds numbers (Re,, > 85)  confirm the shedding of 
vortices into the stream. With increasing Reynolds number (beyond the aforesaid transition 
Reynolds number) a von Karman vortex street is formed and alternate shedding of vortices into 
the stream becomes prominent. The vortex shedding and formation of the von Karman vortex 
street can be better understood from the numerical flow visualization of Figure 4. For a Reynolds 
number of 162 separation is observed at the leading edge followed by rolling up of vortices behind 
the cylinder. The flow is seen to completely detach on the lower surface of the cylinder. A 
favourable comparison between experimental and numerical flow visualizations has been re- 
ported by Okajima.7 Our observation (Figure 4) of numerical flow visualization follows a similar 
qualitative trend to Okajima’s study7 for a Reynolds number of 150. At Re, = 375 the formation 
of the von Karman vortex street and its serpentine bends becomes prominent (Figure 5). The flow 
separates at the leading edge and does not reattach during a period of vortex shedding into the 
wake. 

Figure 6 shows the time evolution of the lift coefficient for two different Reynolds numbers. In 
each case a periodic flow field is observed after a short transient flow. The vortex-shedding 
frequency can be determined from the time evolution plot of the l i t  coefficient distribution. The 
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Figure 4. Streamlines crossing the cylinder in the duct: Re,= 162 

R/H = 0 25 

Figure 5. Streamlines crossing the cylinder in the duct: Re,=375 

time period T can be calculated computati6nally by observing the non-dimensional time when 
the lift coefficient is just crossing the mean value. The difference between two such alternate time 
values (also shown in Figure 6) gives the time period T. Once the time period is known, the 
corresponding frequency (f= 1/T) and the Strouhal number (S =JB/U,) can be evaluated. The 
periodicity is characterized by the vortex-shedding frequency or, so to speak, by the Strouhal 
number. The variation in the Strouhal number over a large range of Reynolds number is 
discussed subsequently. 

The flow field in front of the cylinder seems to be nearly independent of the structure of the 
.14 The influence of the location of the obstacle in the channel (X,) is not of great 

ignificance with respect to the wake structure. However, for a uniform entry profile the effect of 
flow development will come into play. The effect of periodicity on the shear stress distribution is 
shown in Figure 7. It is evident that the local skin friction coefficient C( = C, Re,) on the walls at 
the channel entrance is equal to 12 (the value of the fully developed laminar flow in a 2D channel) 
and tends to this value far downstream of the cylinder. The deviation is skin friction coefficient 
from 12 in front of the cylinder (at a distance of almost 2.5B upstream of the cylinder) shows the 
upstream influence of the obstacle. It is also seen that the distribution of the skin friction C is the 
same on both channel walls for Re, = 25 (steady flow). However, for unsteady periodic flow the 
situation differs considerably. For a Reynolds number of 125 we can see a remarkably changed 
trend in the distribution of the skin friction coefficient on the channel walls at the rear of the 
cylinder. Whereas the upper plate has a very high value of shear stress at X z 3.38, on the lower 
plate a minimum value of shear stress is observed. One will find the opposite at a different 
location (X z 3.73). This oscillating structure is damped gradually downstream of the cylinder. 

The frequency f of vortex shedding was also measured by another technique. This technique 
borrows some ideas from the measurements of Okajima.' We recorded the normal component of 

r k e  
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Figure 6. Time evolution of lift coefficient 

velocity at a position 6B behind the cylinder at y / H = 0 - 5  in the wake. For steady flow the flow 
divides smoothly and reunites around the cylinder. As a consequence the normal component of 
velocity at the aforesaid location will be zero. However, for unsteady periodic flow (i.e. for high 
Reynolds numbers) the normal velocity component at the same location fluctuates. It is evident 
from Figure 8(a) that the recorded signal of the fluctuating velocity in the wake results in a 
sinusoidal wave. The time period T can be calculated from such signal traces, and the correspond- 
ing frequency f( = 1/T)  and Strouhal number s( =fBIU,,) can also be found. Figure 8(b) shows 
fhe oscillation of the lift coefficient for the same Reynolds number and geometrical configuration 
as those of Figure 8(a). The Strouhal numbers obtained in both cases completely agree with each 
other (S=0.164). 
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Figure 7. Variation in skin friction C (= C,Re,) on the channel walls 
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Figure 8(a). Signal traces of fluctuating velocity component in the wake 
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Figure 8(b). Time evolution of lift coefficient 
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Figure 9. Effect of blockage ratio on variation in Strouhal number with Re, 

The effect of blockage ratio on the variation in Strouhal number with Re, is shown in Figure 9. 
With increasing blockage ratio the value of the Strouhal number increases. In all the cases the 
Strouhal number undergoes a slight change with increasing Reynolds number. 

At a low Reynolds number there is a steady reattachment behind the leading edge and the flow 
finally separates at the trailing edge, which results in symmetrical vortices. At somewhat higher 
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Reynolds number, after separation at the leading edge, the flow reattaches on either the upper or 
lower surface of the obstacle during alternate shedding of vortices into the stream. A further 
increase in Reynolds number causes the separated flows to detach completely from the surfaces, 
which eventually widens the wake and is accompanied by a relatively sharp change in Strouhal 
number. However, the range of Reynolds number at which the above-desired changes in the wake 
structure occur depends on the blockage ratio (see Figures 4, 5 and 9 and Table I). 

Table I also shows the Strouhal number calculations from two methods, namely the signal 
traces of the fluctuating velocity components and the time evolution of the lift coefficients. The 
calculated values from the two methods agree with one another. 

Figure 10 compares the Strouhal number distribution with the experimental results of 
Okajima.' The Strouhal number shows a continuous but slight change with Reynolds number. 
The present solution yields a somewhat higher Strouhal number for the entire range of Reynolds 
number. This discrepancy between the experimental and calculated results can be explained by 
noting that the experiments were done for a negligibly small blockage ratio. Although our 

Table I 

Strouhal number S =@JU,, 

Observation From time evolution of From signal traces of 
number Re,= U,,BJv BJH lift coefficient fluctuating velocity 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31  
32 

60 
70 
80 

100 
125 
200 
300 
400 
500 
600 
800 
87 

112 
150 
200 
250 
312 
375 
500 
625 
87 

112 
150 
200 
250 
312 
87 

112 
150 
200 
250 
312 

0125 
0125 
0125 
0.125 
0.125 
0125 
0125 
0125 
0-125 
0.125 
0.125 
0.25 
0-25 
0-25 
0.25 
0.25 
0.25 
0.25 
0.25 
0-25 
0.3125 
0.3 125 
03125 
03125 
03125 
03125 
0-375 
0-375 
0.375 
0.375 
0.375 
0375 

0.1521 
01551 
0.16 
0.1623 
0-164 
01668 
0.167 
0.1672 
0.1672 
0.1674 
0.1651 
0.236 
0238 
0.2384 
0.235 
0.2 12 
0.22 
0.2 12 
0.217 
0.213 
0.2845 
0.2875 
0.29 13 
0.2914 
02885 
0.2842 
0.3317 
0.3452 
0.3488 
0.3506 
0.3566 
0.3337 

0.1520 
01556 
0.159 
0.162 
0.164 
0.1669 
0167 
0.1676 
0.1676 
0 1674 
01654 
0.231 
0.238 
0.2384 
0.235 
0.210 
0.22 
0.211 
0.2 16 
0.2128 
0.2853 
0.2887 
02897 
0.2886 
02859 
0.2778 
03316 
03454 
0.3489 
0351 1 
03423 
0.3203 
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Figure 10. Variation in Strouhal number with Reynolds number for a square cylinder 

predictions were done for a very small blockage ratio (B/H=0.125),  one may conjecture that the 
influence of side walls could not be completely ignored. The finite blockage might have brought 
about some change in Strouhal number. 

The fluctuating velocity signal was measured at various other locations in the duct. The 
frequency of oscillation for a particular situation (i.e. fixed Reynolds number and blockage ratio) 
at different spatial locations was found to be the same. Far downstream the amplitude becomes so 
low that the oscillation becomes insignificant. Possibly because of this, in a long duct the von 
Karman vortex street is gradually damped out and a steady parabolic profile reappears near the 
exit. 
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APPENDIX: NOMENCLATURE 

length of square cylinder 
width of square cylinder 
a parameter, Re,c, 
skin friction coefficient, 2p (au/ay),/pU& 
lift coefficient, U / $ p  U&A 
divergence of velocity vectors, equation (1) 
frequency of vortex shedding 
width of channel 
length of channel 
lift force on cylinder, C PI Ax - 1 Fz Ax 
iterations in time step 
pressure 
non-dimendonal pressure, p / p  U &  
pressure distribution on cylinder surface 
Reynolds number based on cylinder width, U,,B/v 
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Strouhal number, JB/U,, 
time period of oscillation, l lf  
time 
axial component of velocity 
non-dimensional axial velocity, u/U,, 
normal component of velocity 
non-dimensional normal velocity, u/U,, 
axial dimension of co-ordinates 
x / H  
normal dimension of co-ordinates 
Y / H  

Greek letters 

p dynamic viscosity of fluid 
v kinematic viscosity of fluid 
p density of fluid 
t non-dimensional time, t / (  HIU, , )  

Subscripts 

1 bottom surface of obstacle 
2 top surface of obstacle 
av average 
m 
w channel wall 

channel midplane (y, = H / 2 )  
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